Chem 466
lecture\# 21

$$
04 / 08 / 2014
$$

- Exam III Thursday.

$$
\begin{aligned}
Q_{\text {quiz }} 419 & \bar{x}
\end{aligned}=6.1
$$

Copolymer Composition

Figure 5.1 Mole fraction of component 1 in the copolymer as a function of feedstock composition for various reactivity ratios.
crossover point. At the crossover point the copolymer and feed mixture have the same composition. The monomer ratio at this point is conveniently solved by Equation 5.2.15:
$\left(\frac{\left[\mathbf{M}_{1}\right]}{\left[\mathbf{M}_{2}\right]}\right)_{\text {cross }}=\frac{1-r_{2}}{1-r_{1}}$
For the case of $r_{1}=0.33$ and $r_{2}=0.67$ shown in Figure $5.1,\left[M_{1}\right] /\left[M_{2}\right]$ equals 0.5 and $f_{1}=0.33$. This mathematical analysis shows that a comparable result is possible with both r_{1} and r_{2} greater than unity, but is not possible for $r_{1}>1$ and $r_{2}<1$.
6. When $r_{1}=1 / r_{2}$, the copolymer composition curve will be either convex or concave when viewed from the F_{1} axis, depending on whether r_{1} is greater or less than unity. The further removed from unity r_{1} is, the farther the composition curve will be displaced from the 45° line. This situation where $r_{1} r_{2}=1$ is called an ideal copolymerization. The example below explores the origin of this terminology.
There is a parallel between the composition of a copolymer produced from a certain feed and the composition of a vapor in equilibrium with a two-component liquid mixture. The following example illustrates this parallel when the liquid mixture is an ideal solution and the vapor is an ideal gas.

Example 5.1

An ideal gas obeys Dalton's law; that is, the total pressure is the sum of the partial pressures of the components. An ideal solution obeys Raoult's law; that is, the partial pressure of the i th component above a solution is equal to the mole fraction of that component in the solution times the vapor pressure of pure component i. Use these relationships to relate the mole fraction of component 1 in the equilibrium vapor to its mole fraction in a two-component solution and relate the result to the ideal case of the copolymer composition equation.

- Copolgm equation defines ratio of monomer repeat units in poly us. rio of monomer in feed (ran mixtine)
- when $r_{1} \cong r_{2} \cong 1 \Rightarrow$ no pref. + random copolym

$$
r_{1} \cong r_{2} \cong 0 \Rightarrow \text { no homopolyn }+ \text { alternating } \begin{gathered}
\text { copoly }
\end{gathered}
$$

$r_{1} \gg 1 ; r_{2} \cong 0 \Rightarrow M_{1}$ homopolym
can lend $\left\{r_{1} \gg 1 ; r_{2}>0 \Rightarrow\right.$ initially high m_{1} polys differences
in poly then m_{2} polys structure
if tructuritional us. controlled radical polym.

(I) practical polys. conditions

1. bull poly

- no solvent
- cooling may be required, due to exothermicity of polys.
- shrinkage occurs
- monomer/polymes/initiator muscibilities are important

2. Solution polym.

- monomer/polymer/initiator solubilities que important
- dilution u/ solvent provides for heat transfer A smoother (more homogeneous) wa
- mw can be affected bs conc.

3. Suspension polio.

- stirring required
- monomer droplets ($10-1000 \mu \mathrm{~m}$ diameter) suspended in $\mathrm{H}_{2} \mathrm{O}$
- initiator dissolved in monomer
- suspending agents added
$-\mathrm{H}_{2} \mathrm{O}$ insoluble inorganic, es. barium sulfate
- if $\mathrm{H}_{2} \mathrm{O}$ soluble poly $+\mathrm{H}_{2} \mathrm{O}$ soluble initiator \Rightarrow dispersion polios.
- polis proceeds like many individual bulk polys. (same lurexics)
- gives large particles 10-1000 um
- size + size dist dependent on suspending agent t string rate

4. Emulsion polgm

- monomer droptos ($50 \mathrm{~nm}-1$ crane) suspended in $\mathrm{H}_{2} \mathrm{O}$ so micelles
- mitiator (I) dissolved in $\mathrm{H}_{2} \mathrm{O}$
- surfactants (emulsifier) added
- polio. occurs inside micelles
- diffusion controlled
- vate of diffusion of $m \& R$. into micelles

Both methods $3+4$ can be used for most $\mathrm{H}_{2} \mathrm{O}$ insoluble monomers

particulars good for $C F_{2}=C F_{2}$.
(J) Inhibitors + Retarders

- used during storage of monomers to seduce polys. (unwanted)

$$
\text { Inhibition constant, } z=\frac{k_{z}}{k_{p}}=\frac{\text { rate constant for trapping }}{\text { rate constant for prop. }}
$$

induction
period - no conversion
(when all radicals are captured \Rightarrow no polys.)

- Inhibitor - prevents polys. as long as it is present (induction period, $\frac{k_{z}}{k_{p}}>10$), but since consumed polys. occurs is w/ont inhibitor
es.

$$
\begin{aligned}
& 0=0 \\
& \text { benzoqninone }
\end{aligned}
$$

- these species un undergo uni further w/addtional vadiulas

Phenol
(1)-0)1t is a poorer inhibitor

$$
\begin{aligned}
R \cdot \int \longdiv { (\pi) } 0 \cdot & R-H \\
R \cdot \cdots & R-0-R
\end{aligned}
$$

BHT - used as a food antioxidant
(2,6-di-tert-butgl-4-methyl phenol)

- good at. scavenging perry radicals
t-butyl catechol - is of ton used as inhibitor (is. when purchase styrene from Aldrich)

an o-quinone
(which can undergo further radical scaveng'g)
- Retarder - decreases the ant. of polys. by trapping some of the unwanted radicals

$$
\left(z<1 ; k_{\text {pup }}>k_{z}\right)
$$

- no induction period b/c no completer trapping of radicals
- once retarder is consumed polys. occurs as wont retarder
es.

$$
R \cdot(\mathrm{NO}+(\text { catch) }
$$ more slowly than kprop

$$
R-N=\mathrm{NO}_{2}+R-H
$$

- combo of monomer t additive detims whether inhibitor or stander:
[1] $\mathrm{NO}_{2} e^{e}$ deficient Ar ling -reacts more readily with io rich radicals + more reactive radicals
es. virylacetate

methlacylate

Reactivin: e^{O} richnes:

0.00464
little effect
stzere

(3)

0.326
retards

- Irhibitors + retarders nust be removed prior to polym. of monomer (by chiomatograpty, distillation, sotractorn, rex, ete.) to obtain reproducible + controlled polym.
- Add'n of excess initiator to consume inhibitor/retardor + then proceed w/ polyon. is done anly wher puificatoion is not feasible.

